C. U. SHAH UNIVERSITY Summer Examination-2020

Subject Name: Complex Analysis

Subject Code: 5SC0	1COA1	Branch: M.Sc. (Mathematics)		
Semester : 1	Date : 28/02/2020	Time : 02:30 To 05:30	Marks : 70	

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION - I

		SECTION -1	
Q-1		Attempt the Following questions.	(07)
	a.	Find the modulus and argument of $f(z) = -\sqrt{3} + i$.	02
	b.	Write C-R equation in polar form.	02
	c.	Prove that $\cos h^2 x - \sin h^2 x = 1$.	02
	d.	Find real and imaginary part of $f(z) = \frac{3+2i}{1-i}$	01
Q-2		Attempt all questions	(14)
	a.	State and Prove C-R equation. π	07
	b.	Find the complex number z if $arg(z + 2i) = \frac{\pi}{4}$ and	05
		$\arg(z-2i)=\frac{3\pi}{4}.$	
	c.	Prove that $\sin(ix) = \sin hx$	02
		OR	
Q-2		Attempt all questions	(14)
	a.	Find the value of $(1 + i\sqrt{3})^{90} + (1 - i\sqrt{3})^{90}$.	05
	b.	If cosec $\left(\frac{\pi}{4} + ix\right) = u + iv$ then prove that	05
		$(u^2 + v^2)^2 = 2(u^2 - v^2)$	
	c.	Show that $\tanh^{-1} z = \frac{1}{2} \log \frac{1+z}{1-z}$.	04
Q-3		Attempt all questions	(14)
	a.	Suppose $f(z) = u + iv$ and $z_0 = x_0 + iy_0$ then $\lim_{z \to z_0} f(z) = w_0$ if	05
		and only if $\lim_{(x,y)\to(x_0,y_0)} u(x,y) = u_0$ and $\lim_{(x,y)\to(x_0,y_0)} v(x,y) =$	
		v_0 where $w_0 = u_0 + iv_0$.	
	b.	Find the harmonic conjugate of $u(x, y) = 2x - x^3 + 3xy^2$.	05
	c.	Check the function $f(z) = \frac{1}{z}$ satisfy C-R equation or not.	04
		OR	
0-3		Attempt all questions	(14)

Q-3 Attempt all questions

(14)

	a.	Suppose v is harmonic conjugate of u and V is also harmonic conjugate	05
	b.	of <i>u</i> then <i>v</i> and <i>V</i> are differ by constant. Find the common roots of $z^4 + 1 = 0$ and $z^6 - i = 0$.	05
	D. C.		03 04
		Suppose $f(z)$ is analytic then prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2$	
		SECTION – II	
Q-4	a.	Attempt the Following questions. State Residue theorem.	(07) 02
	b.	Find the radius of convergence of $\sum_{n=0}^{\infty} \frac{z^n (n!)^2}{2n!}$.	02
	c.	Define: Analytic function	01
	d.	State Cauchy's theorem.	01
	e.	Find invariant point of the transformation $w = \frac{6z-9}{z}$.	01
Q-5		Attempt all questions	(14)
	a.	State and prove Cauchy's integral formula.	07
	b.	Evaluate $\int_c \bar{z} dz$ from $z = 1 - i$ to $z = 3 + 2i$ along the straight line.	05
	c.	State Morera's theorem.	02
		OR	
Q-5		Attempt all questions	
	a.	If $f(z_0) = \int_c \frac{3z^2 + 7z + 1}{z - z_0} dz$ where $c: z = 2$ then find value of $f(1 - i)$	05
	b.	and $f''(1-i)$. State and prove M-L inequality.	05
		Expand $f(z) = \frac{z+5}{z^2+3z+2}$ in the region $ z < 1$.	04
	ι.	$z^{2}+3z+2$	04
Q-6		Attempt all questions	(14)
X °	a.	If $f(z)$ is analytic in the annular domain D given by	07
		$\rho_1 < z - z_0 < \rho_2$, then $f(z)$ can be represented by the series $f(z) =$	
		$\sum_{n=0}^{\infty} A_n (z-z_0)^n + \sum_{n=1}^{\infty} B_n (z-z_0)^{-n}$, where	
		$A_n = \frac{1}{2\pi i} \int_{c_2} \frac{f(z)}{(z - z_0)^{n+1}} dz \text{ and } B_n = \frac{1}{2\pi i} \int_{c_1} \frac{f(z)}{(z - z_0)^{n+1}} dz$	
	b.	Evaluate: $\int_c \frac{(z^2-2z)}{(z+1)^2(z^2+4)} dz$ when <i>c</i> is the circle $ z = 3$ by using residue theorem.	05
	c.	Find an upper bound for the absolute value of the integral $\left \int_{c} e^{z} dz\right $,	02
		where <i>c</i> is line segment joining the point (0,0) and $(1,2\sqrt{2})$.	
		OR	
Q-6		Attempt all Questions	(14)
	a.	Find the bilinear transformation that maps the point 0,1, <i>i</i> in <i>z</i> -plane	05
	h	onto the points $1 + i$, $-i$, $2 - i$ in the w-plane.	05
	b.	Find Laurent's expansion of $f(z) = \frac{7z-2}{z(z+1)(z-2)}$ in the annulus 1 <	03
		z+1 < 3.	
	c.	Evaluate: $\int_c \frac{e^z}{z^2+1} dz$; where $c: z = \frac{1}{2}$.	04

